Learning Multiple Hierarchical Relational Clusterings

نویسندگان

  • Aniruddh Nath
  • Pedro Domingos
چکیده

Three important generalizations of the basic clustering problem are relational, hierarchical, and multiple clustering. This paper proposes the first approach to clustering that unifies all three. We describe a general probabilistic model for relational clustering, and show that flat, hierarchical and multiple relational clustering models are special cases. This paper also describes an efficient search algorithm for learning multiple hierarchical clusterings. A preliminary empirical evaluation shows the promise of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning and Exploiting Relational Structure for Efficient Inference

Learning and Exploiting Relational Structure for Efficient Inference Aniruddh Nath Chair of the Supervisory Committee: Professor Pedro Domingos Computer Science & Engineering One of the central challenges of statistical relational learning is the tradeoff between expressiveness and computational tractability. Representations such as Markov logic can capture rich joint probabilistic models over ...

متن کامل

An ART-based modular architecture hierarchical clusterings for learning

This paper introduces a neural architecture (HART for “Hierarchical ART”) that is capable of learning hierarchical clusterings of arbitrary input sequences. The network is built up of layers of Adaptive Resonance Theory (ART) network modules where each layer learns to cluster the prororypes developed at the layer directly below it. The notion of e&hue oigifance is introduced to refer to the vig...

متن کامل

Feature Selection as Retrospective Pruning in Hierarchical Clustering

Although feature selection is a central problem in inductive learning as suggested by the growing amount of research in this area, most of the work has been carried out under the supervised learning paradigm, paying little attention to unsupervised learning tasks and, particularly, clustering tasks. In this paper, we analyze the particular beneets that feature selection may provide in hierarchi...

متن کامل

Iterative Optimization and Simpliication of Hierarchical Clusterings

Clustering is often used for discovering structure in data. Clustering systems diier in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can ...

متن کامل

Extending Consensus Clustering to Explore Multiple Clustering Views

Consensus clustering has emerged as an important extension of the classical clustering problem. Given a set of input clusterings of a given dataset, consensus clustering aims to find a single final clustering which is a better fit in some sense than the existing clusterings. There is a significant drawback in generating a single consensus clustering since different input clusterings could diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012